

The principles of
unobtrusive JavaScript

Peter-Paul Koch (ppk)
http://quirksmode.org

An Event Apart Boston, June 24th, 2008

Hell is other browsers - Sartre

Unobtrusive JavaScript

Wikipedia:
“an emerging paradigm in the
JavaScript programming language.”

Me:
it's just a good idea.

Unobtrusive JavaScript

It's not a technique

It's more like a philosophy
for using JavaScript in its context:

usable, accessible, standards-
compliant web pages

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
 - Separate them
 - Connect them

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
 - Separate them
 - Connect them

Separate them

Separation of HTML and CSS:

<div style=”position: relative”>

Separate them

Separation of HTML and CSS:

<div style=”position: relative”>

No inline styles!

Separate them

Separation of HTML and CSS:

<div class=”container”>

div.container {
position: relative;

}

Separate them

Separation of HTML and JavaScript:

<input onmouseover=”doSomething()” />

Separate them

Separation of HTML and JavaScript:

<input onmouseover=”doSomething()” />

No inline event handlers!

Separate them

Separation of HTML and JavaScript:

<input id=”special” />

$('special').onmouseover =
function () {

doSomething();
}

Separate them

Advantages

- Ease of maintenance

Separate them

Separation of HTML and JavaScript:

<input id=”special” />

$('special').onmouseover =
function () {

doSomething();
}

Separate them

Separation of HTML and JavaScript:

<input id=”special” />

$('special').onmouseover = $('special').onfocus =
function () {

doSomething();
}

Separate them

Advantages

- Ease of maintenance
- The CSS and JavaScript layers can
 be edited simultaneously

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
 - Separate them
 - Connect them

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
 - Separate them
 - Connect them

Connect them

Hooks

Connect them

- id

document.getElementById();

Connect them

- id

document.getElementById('special').
onmouseover = doSomething;

Connect them

- id

var el = document.getElementById('special');
if (el) {

el.onmouseover = doSomething;
}

“Is this element available?”

Connect them

- id
- class

getElementsByClassName();
or a library function

Connect them

- id
- class

var els =
document.getElementsByClassName('special')
if (els.length) {

// go through all elements and do something
}

Connect them

- id
- class

Use the same hook for presentation
and behavior; for CSS and JavaScript.

Connect them

<ol class=”dropdown“>

Now what would this be?

Surprise:
it's a dropdown menu

Connect them

<ol class=”dropdown“>

The class is a hook for both layers.

ol.dropdown {
// presentation layer

}

Connect them

<ol class=”dropdown“>

The class is a hook for both layers.

var dropdowns = $('dropdown');
if (dropdowns.length) {

// initialize behavior layer
}

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
 - Separate them
 - Connect them

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything

 - “JavaScript is always available”
 - “Everybody uses a mouse”

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything

 - “JavaScript is always available”
 - “Everybody uses a mouse”

JavaScript is always available

Nonsense!

JavaScript is always available

- Primitive cell phones don't support
 it (sufficiently)

- Speech browsers' support may be
 spotty

- Company networks may filter out
 <script> tags

JavaScript is always available

Make sure that the content and
navigation of the site can be used
without JavaScript.

JavaScript is always available

Make sure that the content and
navigation of the site can be used
without JavaScript.

The page will remain accessible in all
circumstances.

JavaScript is always available

Make sure that the content and
navigation of the site can be used
without JavaScript.

You can use JavaScript for nice
extras, though.

JavaScript is always available

However...

Without JavaScript the page will
become less user-friendly.

Can't be helped.

JavaScript is always available

However...

Without JavaScript the page will
become less user-friendly.

After all, the purpose of JavaScript is
to add interactivity to a page.

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything

 - “JavaScript is always available”
 - “Everybody uses a mouse”

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything

 - “JavaScript is always available”
 - “Everybody uses a mouse”

Everybody uses a mouse

Nonsense!

Device
independence

Take a dropdown menu:

var dropdown = {
setEventHandlers: function (obj) {

obj.onmouseover = this.over;
obj.onmouseout = this.out;

},
over: function () {

// code
},
// etc

}

It doesn't work without a mouse.

var dropdown = {
setEventHandlers: function (obj) {

obj.onmouseover = this.over;
obj.onmouseout = this.out;

},
over: function () {

// code
},
// etc

}

var dropdown = {
setEventHandlers: function (obj) {

obj.onmouseover = this.over;
obj.onmouseout = this.out;

},
over: function () {

// code
},
// etc

}

We need evens that are fired when
the user “enters” or “leaves” a link by
using the keyboard.

focus and blur

var dropdown = {
setEventHandlers: function (obj) {

obj.onmouseover = obj.onfocus = this.over;
obj.onmouseout = obj.onblur = this.out;

},
over: function () {

// code
},
// etc

}

var dropdown = {
setEventHandlers: function (obj) {

obj.onmouseover = obj.onfocus = this.over;
obj.onmouseout = obj.onblur = this.out;

},
over: function () {

// code
},
// etc

}

Restriction:
the object must be able to gain the
keyboard focus.

- links
- form fields

var dropdown = {
setEventHandlers: function (obj) {

obj.onmouseover = obj.onfocus = this.over;
obj.onmouseout = obj.onblur = this.out;

},
over: function () {

// code
},
// etc

}

Restriction:
the object must be able to gain the
keyboard focus.

- links
- form fields
- elements with tabindex

And what about click?

We're in luck: the click event fires also
when the user activates an element by
the keyboard.

click should be called activate.

And what about click?

We're in luck: the click event fires also
when the user activates an element by
the keyboard.

Restriction:
the object must be able to gain the
keyboard focus.

Click as activate

arrow.onclick = showMenu;

Click as activate

arrow.onclick = showMenu;

1) Mouse click on the arrow

Click as activate

arrow.onclick = showMenu;

1) Mouse click on the arrow
2) a) Keyboard focus on the arrow

Click as activate

arrow.onclick = showMenu;

1) Mouse click on the arrow
2) a) Keyboard focus on the arrow
 b) Space bar on the arrow

That's two actions.

Click as activate

arrow.onclick = arrow.onfocus = showMenu;

1) Mouse click on the arrow
2) Keyboard focus on the arrow
 b) Space bar on the arrow

Click as activate

arrow.onclick = arrow.onfocus = showMenu;

1) Mouse click on the arrow
2) Keyboard focus on the arrow

The next tab will focus on the sub-menu. The
user won't be able to skip it.

Click as activate

arrow.onclick = arrow.onfocus = showMenu;

Generally, keyboard users need more actions
to achieve the same goals as mouse users.

Don't interfere too much. There are reasons for
this behavior, and keyboard users are used to
it.

Separate concepts

Drag-and-drop
uses the mousemove event

Separate concepts

Drag-and-drop
uses the mousemove event

and if there's one thing that's
impossible to emulate with the
keyboard

it's moving the mouse

Separate concepts

Drag-and-drop
uses the mousemove event

How do we make this accessible?

By allowing the user to use the arrow
keys.
Key events.

Separate concepts

Drag-and-drop

For detecting arrow keys (or other
special keys) we need the keydown
event.

Not keypress. (Doesn't work in IE and
Safari)

Separate concepts

Drag-and-drop

For detecting arrow keys (or other
special keys) we need the keydown
event.

Not keypress. (Doesn't work in IE and
Safari)

Separate concepts

Drag-and-drop

obj.onmousemove =
obj.onkeydown = moveElement;

Separate concepts

Drag-and-drop

obj.onmousemove =
obj.onkeydown = moveElement;

Doesn't work.

Separate concepts

Drag-and-drop

obj.onmousemove =
obj.onkeydown = moveElement;

Mousemove expects mouse
coordinates.
The layer moves to these coordinates.

Separate concepts

Drag-and-drop

obj.onmousemove =
obj.onkeydown = moveElement;

The key events expect a keystroke.

But what does “user hits right arrow
once” mean?

Separate concepts

Drag-and-drop

obj.onmousemove =
obj.onkeydown = moveElement;

10px?
50px?
“Move to next receptor element?”
Something else that fits your interface?

Separate concepts

Drag-and-drop

obj.onmousemove =
obj.onkeydown = moveElement;

We have to program for two totally
different situations.
We need separate scripts.

Separate concepts

Drag-and-drop

obj.onmousemove = moveByMouse;
obj.onkeydown = moveByKeys;

We have to program for two totally
different situations.
We need separate scripts.

Separate concepts

Drag-and-drop

obj.onmousemove = moveByMouse;
obj.onkeydown = moveByKeys;

Yes, that's more work.

Separate concepts

Drag-and-drop

obj.onmousemove = moveByMouse;
obj.onkeydown = moveByKeys;

But if you do it right you've got a
generic drag and drop module you can
use anywhere.

Separate concepts

Drag-and-drop

obj.onmousemove = moveByMouse;
obj.onkeydown = moveByKeys;

Besides, I created a first draft for you.

Separate concepts

Drag-and-drop

http://quirksmode.org/
js/dragdrop.html

Besides, I created a first draft for you.

http://quirksmode.org/

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything.

Unobtrusive
JavaScript
It's not that hard

Need help?

Chris Heilmann:
http://onlinetools.org/articles/unobtrusivejavascript/
http://icant.co.uk/articles/seven-rules-of-unobtrusive-javascript/

Jeremy Keith:
http://www.alistapart.com/articles/behavioralseparation

and of course quirksmode.org

http://onlinetools.org/articles/unobtrusivejavascript/

Questions?

