
<layer>
or the ingrained habits

of web development
Peter-Paul Koch

http://quirksmode.org
http://twitter.com/ppk

HTML Special, 16 June 2016

Who here remembers
the <layer> tag?

<layer>
• Essentially what we call now an absolutely

positioned element

• except that you can’t change it, except for
its coordinates

• and Netscape 4’s bugs made it very hard to
work with (reflow, anyone?)

• Fortunately, absolutely positioned elements
in IE worked a lot better.

<layer>
• If you remember this, you also remember

most of the history of web development.

• Today I’m going to talk about that history,
and about the lessons we web developers
learned - for good or for ill.

• And <layer> and its ilk stand at the start of
that history.

Warning:
work in
progress

1

The Browser
Wars

Browser Wars
• Incompatibilities during the Browser Wars

were deliberate: Netscape and Microsoft
introduced them in order to lure web
developers to their platform.

• Result: web developers learned it was OK
to test in only one browser

• and to use the dreaded “best viewed in”

Habit acquired

Test in only one
browser. The rest is
not good enough

anyway.

Browser Wars
• But before you laugh at those silly web

developers from 15 years ago, remember
that “best viewed in” is still a thing.

Browser Wars
• But before you laugh at those silly web

developers from 15 years ago, remember
that “best viewed in” is still a thing.

• To their credit, Google is pushing back
aggressively.

Browser Peace
• As we all know, IE won the Browser Wars

of 1998-2001. What we commonly forget is
that that was deserved: IE was a way better
browser than Netscape

• Who remembers first setting eyes on IE6?
It was an insanely good browser when it
came out.

• Disadvantage: “best viewed in” reinforced.

• Also: yesterday’s wonderful browser may be
today’s piece of junk.

2

Tools - the
beginning

Tools - the first wave
• Anyway, in order to combat

incompatibilities you need tools.

• … right?

Habit acquired

Use tools to work
around

incompatibilities

Tools - the first wave
• But I think there’s a second factor in our

tool use.

• “Real” programmers use tools. And they
follow rules and things.

• And they look down on us. Because we’re
just a bunch of script kiddies dealing with a
browser and a markup language. Easy stuff.

Habit acquired

Feel inferior to
“real” programmers.

Compensate.

Compensation

function getDocumentBody() {

 return document.body

}

3

The standards
revolution

Standards revolution
• From 1998 on the WaSP (Web Standards

Project) took aim at browsers that didn’t
implement W3C standards. Back then, that
meant Netscape and IE both.

• Successful, as we all know

• But the real point is that web developers
took action in their own right

Standards revolution
• This forced us to create our own

ecosystem, since nobody else cared.

• Good and bad consequences.

• Good: conferences. All good web dev
conferences are organized by web devs
themselves and are different from other
software conferences.

• Bad: impenetrable jargon such as
progressive enhancement. Difference
between pseudo-class and pseudo-element.

Habit acquired

Look inward. No
one understands us

anyway.
Has good and bad

consequences.

4

The app
revolution

The app revolution
The app revolution actually started before the
mobile revolution.

In 2006-8, several successful web apps were
built that emulated native desktop apps; most
importantly Google Docs took on Microsoft
Office.

Quality was generally good (enough), so this
was rightfully seen as a victory for the web.

The app revolution
After those successes, web developers thought
they could do better than native mobile apps
as well.

This, generally speaking, has turned out not to
be the case

but our feature priorities and the general
direction of web development still point
towards ever more complicated apps

Habit acquired

Compare browsers
to things that are

not browsers

The app revolution
Technically, it’s simple.

Native apps communicate directly with the
OS.

Web apps communicate with the browser,
which communicates with the OS.

Therefore web apps will always be a bit slower
and coarser than native apps.

5

The mobile
revolution

The mobile revolution
• Many more screen resolutions than ever.

Besides, they were important: iPhone!

• Many more browsers than ever. UC?
BlackBerry? Samsung Chromium? Opera
Mini?

• Native apps, and the desire to emulate
them.

The mobile revolution
• Screens: responsive design. Solved because

the solution is technically simple.

• Many browsers: ignore. BlackWHAT? Who
uses Opera Mini? UC is for China only.
There is but one Chrome.

• Native apps: emulate! OMG emulate! We
must emulate!

Habit acquired

Responsive design
-> caring about

screen sizes

6

The tool
revolution

The tool revolution
• Every week there are new libraries and

frameworks that promise to solve slight
problems in existing ones

• Sure, there are the big ones, such as
Angular, React, Ember, etc.

• but they’re pretty new as well

• and they have their share of problems

The tool revolution
• Polyfills

• MV* frameworks

• UX libraries

• Dependency thingies

• Other thingies with weird names

• etc.

The tool revolution
• Polyfills

• MV* frameworks

• UX libraries

• Dependency thingies

• Other thingies with weird names

• etc.

Why so many?

The tool revolution
I think we’re using this many tools because we
want to show web app development is a
Serious Thing

and Serious Developers use long toolchains

but these long toolchains run on a server

except on the web, where we force all of our
users to run them

even when they’re on an old mobile phone on
a crappy network

Habit reinforced

Use tools.
Because Serious

Programmers do it.

Modularization
encourages
over-design

John Daggett

The true JavaScripter
• uses libraries and frameworks when he

needs

• but studies them in detail before doing so

• and prefers to use a single one per project

• is able to write a medium-complex
application without any libraries or
frameworks

• which gives him the technical background
to change a library or framework if
necessary

If you can’t do
without tools

you’re not a web
developer

7

Platforms

Platforms
• Web developers too often look at “real”

programmers for guidance.

• In general that’s a good idea.

• But in some cases their guidance is totally
wrong because not all software engineering
precepts work on the web.

• Cause: a fundamental misunderstanding of
the nature of the web.

Browsers are the most
hostile

development platforms
in the world

Douglas Crockford

Browsers are the most
hostile misunderstood
development platforms

in the world

not quite Douglas Crockford

Web platforms
I feel back-end developers underestimate the web
platform, and thus front-end development

because they misunderstand one crucial aspect.

The web is not one platform.

It is a multitude of platforms,
most of which you’ll never
test on.

Platforms
• Why do back-enders expect the web to be

one platform?

• They usually work for a manageable
number of known environments, where
languages, libraries, power and memory, and
tools are pre-defined.

• They expect front-end to be one
environment that they have to learn, but
that’s not fundamentally different

• But it is fundamentally different.

DRY
• DRY: DO repeat yourself!

• Web development requires you to repeat
yourself. If you have an Ajax script that adds
data to the page, make sure there’s also a
simple link somewhere.

• You write the same functionality twice.

• Not all software engineering principles
make sense on the web

• because the web is not one platform

8

Experience
focus

Software market maturity

by Jared Spool

1. Technology focus. Concentrate on the fact
that it works at all.

2. Feature focus. Concentrate on new features
users may need.

3. Experience focus. Concentrate on the
overall experience users get.

Users = web developers, and not visitors!

Software market maturity
We’ve been stuck in the feature focus phase
for far too long.

I’d say it’s time to move to the experience
focus stage. I’d say we want to improve the
overall experience of creating websites.

What does that mean? I have no clue.

9

Habits

Habits
• Test in only one browser

• Use tools. Everybody does it.

• Feel inferior to “real” programmers

• Look inward into our own ecosystem.

• Compare browsers to things that are not
browsers

• Responsive design

Habits
• Test in only one browser

• Use tools. Everybody does it.

• Feel inferior to “real” programmers

• Look inward into our own ecosystem.

• Compare browsers to things that are not
browsers

• Responsive design

Thank you
I’ll put these slides online

Questions?
Peter-Paul Koch

http://quirksmode.org
http://twitter.com/ppk

HTML Special, 16 June 2016

