
How to approach
the web platforms

Peter-Paul Koch
http://quirksmode.org
http://twitter.com/ppk

Nordic Competence Conference, 12 September 2015

1

The problem

Web platforms

I feel back-end developers underestimate the web
platform, and thus front-end development

because they misunderstand one crucial aspect.

The web is not one platform.

Environments
• Back-enders usually work for one known

environment, where languages, libraries,
power and memory, and tools are pre-
defined.

• They expect front-end to be similar: one
known environment that they have to learn
the ins and outs of, but that’s not
fundamentally different

• But it is fundamentally different

Suppose your application…
• must run on the five most common Java

server environments, all of which bring out
a new version every six weeks

• uses four CDNs, two of which have bad
APIs

• uses three sets of incompatible libraries,
one of which is still in beta

• needs two root certificates that are
deliberately incompatible

Welcome to
my world

And …
• good documentation exists only for two

Java server environments and one CDN -
the rest is only sketchily documented by
other developers

• kernel panics occur on your users’ computers,
and not on your servers

• this entire landscape changes every six
months

That’s the
front-end

experience

Assumptions
• The web is one monolithic platform

• A mature toolchain is available

These two assumptions reinforce each other.

The web is one platform because one
toolchain is available.

One toolchain is available because the web is
one platform.

Both
assumptions are

wrong

2

Toolchains

Toolchains
• The web platform toolchain is not mature

• Every week there are new libraries and
frameworks that promise to solve slight
problems in existing ones

• Sure, there are the big ones, such as
Angular, React, Ember, etc.

• but they’re pretty new as well

• and they have their share of problems

Anatomy of library use
1. Browser must download the library. This is

not a huge problem, since authors have been
well aware of this fact for years

2. Then the library must be initialised. This is
commonly forgotten

Library initialisation
• Take an Android phone and measure its

battery power consumption

• Load a mobile Wikipedia page. It uses
jQuery for its show/hide script.

• Then replace jQuery by a five-line custom
script.

• This saves 30% of the power

http://crypto.stanford.edu/~dabo/papers/browserpower.pdf

http://crypto.stanford.edu/~dabo/papers/browserpower.pdf

Anatomy of library use
1. Browser must download library. This is not a

huge problem, since authors have been well
aware of this fact for years

2. Then the library must be initialised. This is
commonly forgotten

Anatomy of library use
1. Browser must download library. This is not a

huge problem, since authors have been well
aware of this fact for years

2. Then the library must be initialised. This is
commonly forgotten

3. Then the library might need to parse the
DOM.

Library DOM parsing
{{item.name}}
{{item.value}}
{{item.price}}

• This sort of code belongs on the server. If a
library uses it it’s not suited for front-end
development.

• Why not? The library has to parse DOM
text nodes to find these fragments, and that
is the most costly operation imaginable.

• (Looking at you, Angular.)

Library DOM parsing
Placeholder <span
id=“itemValue”>Placeholder
<span
id=“itemPrice”>Placeholder

• Instead, libraries should require HTML
elements with specific IDs, so that they can
be found without parsing the entire DOM.

• (Or any other scheme based on HTML
attributes. They’re a LOT easier to find than
text.)

Anatomy of library use
1. Browser must download library. This is not a

huge problem, since authors have been well
aware of this fact for years

2. Then the library must be initialised. This is
commonly forgotten

3. Then the library might need to parse the
DOM.

Anatomy of library use
1. Browser must download library. This is not a

huge problem, since authors have been well
aware of this fact for years

2. Then the library must be initialised. This is
commonly forgotten

3. Then the library might need to parse the
DOM

4. Now the library is ready and waits for user
input - which might cause costly operations
all over again, but we’re aware of that

The true JavaScripter
• uses libraries and frameworks when he

needs

• but studies them in detail before doing so

• and prefers to use a single one per project

• is able to write a medium-complex
application without any libraries or
frameworks

• which gives him the technical background
to change a library or framework if
necessary

Toolchain conclusion
• There are plenty of tools, but the front-end

toolchain is immature. Too much is going
on.

• Many tools are fairly heavy; either in
initialisation or in needless DOM parsing

• State of the toolchain proves nothing about
the web platform

• Make sure you can do without tools (which
is not the same as never using tools)

3

Browsers

Browsers are the most
hostile development

platforms in the world

Douglas Crockford

Hostile

The web is not a platform.

It is a multitude of platforms,
most of which you’ll never
test on.

4

The
Android
example

Android WebKit
• Originally the Android default browser was

Android WebKit

• Each device vendor modified it slightly

• So we’ve got HTC Android WebKit, and
Samsung Android WebKit, and LG Android
WebKit, and … well, you get the idea.

Change of browsers
• Google wants Chrome to become the

default browser on Android.

• It ceased development of Android WebKit
after Android 4.3

• Device vendors can continue to use it, or
can switch to Chrome.

• OR …

• they can build their own. Chromium is free
to download, after all.

Chromia
• Now the Android default browser is Chrome

• Each device vendor can either use Google
Chrome, or download and adjust its own

• So we’ve got HTC Chromium, and Samsung
Chromium, and LG Chromium, and … well,
you get the idea.

Chromia shares
Netherlands

Chromium 40
39%

Chromium 30
18%

Chromium 28
27%

Chromium 18
Chromium 28
Chromium 30
Chromium 33
Chromium 37
Chromium 39
Chromium 40
Others

Source: about 46K Chromium-impressions
from a Dutch ad network; 31st Jan 2015
See also: http://www.quirksmode.org/blog/archives/2015/02/
counting_chromi.html

http://www.quirksmode.org/blog/archives/2015/02/counting_chromi.html

Google Services
• The situation is clearly not complicated

enough.

• Google Services. A package of crucial
Google apps such as Maps, YouTube, Play …
and Chrome.

• Device vendors may opt in to or out of the
entire package. No picking and choosing!

• Opting in requires them to install Google
Chrome on their devices

• but not to make it the default browser

Google Services
• Thus the Samsung Galaxy S4 and up has two

browsers pre-installed:

• Samsung Chrome 28, which is under the
“Internet” icon on the home screen

• Google Chrome 45 (and counting), which
can be found in the Apps menu

Google Services
• Thus the HTC M8 has two browsers pre-

installed:

• HTC Chromium 33, which is under the
“Internet” icon on the home screen

• Google Chrome 45 (and counting), which
can be found in the Apps menu

Google Services
• Some vendors opted out of Google Services

• Amazon (competitor of Google on service
level)

• the Chinese vendors such as Xiaomi, Huawei,
ZTE, etc. (China has its own services)

• These devices must create their own default
browser (based, if they wish, on Chromium)

• and they do NOT have Google Chrome pre-
installed.

Android default browsers
Samsung Chromium 28 or 34

HTC Chromium 33

LG Chromium 30 or 34

Xiaomi Chromium 34 or 35

Cyanogen Chromium 33

Huawei Chromium 30

Sony Chrome current

Nexus Chrome current

(Incidentally, Chrome on iOS is not Chrome.
It’s Safari.)

Most browsers do this

HTC default browsers do this

Future:
Moar Chromia!

5

Handling
browsers

Supported browser list
• But that browser isn’t on our Supported

Browser List!

• Not fair.

• First, an environment (including toolchain)
is defined

• and the Supported Browser List consists of
browsers that run that environment.

• Circular argument

Supported browser list
• This is not the right way to approach the

web.

• You pretend there is only one platform

• but as we saw there are countless ones.

Supported browser list
• Instead, take an A-list, B-list, C-list approach.

• A-list browsers are the ones you guarantee
the application to work in.

• B-list browsers (optional) are the ones you
consider likely to run the entire application
and/or they lack a few non-essential
features.

• C-list browsers are all other browsers; you
don’t make any guarantees, but they’ll at
least be able to view the HTML.

Solution: build multiple
versions of your

application

Internal
functions

JSON

JSON

???

Internal
functions

JSONHTML

Noscript version
• The point of building a noscript version of

your application is NOT users without
JavaScript.

• Few users disable JavaScript entirely.

• Instead, users may be on a crappy device
that takes ages to initialise the libraries

• or on a crappy network where the library
just doesn’t load

• A monitor script could figure that out and
switch to the noscript version

Noscript version
• The noscript version is aimed at different

platforms than the scripted one.

• In fact, because it aims at the lowest
common denominator (HTML), it is certain
to work in ALL browsers

• Thus it’s an excellent fallback when
unforeseen problems occur

Several versions
• This is in fact a general rule.

• Creating an extra version of your
application allows you to target more web
platforms.

• In addition to noscript, maybe you want a
version that doesn’t use animations

• or one that leaves out the secondary page
content

6

Conclusion

The web platforms
• There are countless web platforms

• and the web toolchain is in chaos

• and browsers are in chaos, too, especially
on Android

• The optimal strategy is to create several
versions of your application, each aimed at
certain web platforms

• and to be able to write JavaScript without
libraries

Learning and teaching
• Java developers hold that they’re better

than front-end developers at structuring
large applications.

• Front-enders recognise that

• Front-enders hold that they’re better than
Java developers at dealing with browsers.

• Back-enders don’t recognise that

• Imbalance; insisting on your version of the
truth while casually dismissing someone
else’s comes across as arrogant

Thank you
I’ll put these slides online

Questions?
Peter-Paul Koch

http://quirksmode.org
http://twitter.com/ppk

Nordic Competence Conference, 12 September 2015

