

Ajax Workshop
Peter-Paul Koch (ppk)

http://quirksmode.org
Fundamentos del Web, 28 October 2008

Hell is other browsers - Sartre

Ajax Workshop

Part I- Unobtrusive
JavaScript

Hell is other browsers - Sartre

Unobtrusive JavaScript

It's not a technique

It's more like a philosophy
for using JavaScript in its context:

usable, accessible, standards-
compliant web pages

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything

Separate them

Separation of HTML and JavaScript:

<input onmouseover=”doSomething()” />

Separate them

Separation of HTML and JavaScript:

<input onmouseover=”doSomething()” />

No inline event handlers!

Separate them

Separation of HTML and JavaScript:

<input id=”special” />

$('special').onmouseover =
function () {

doSomething();
}

Separate them

Advantages

- Ease of maintenance

Separate them

Separation of HTML and JavaScript:

<input id=”special” />

$('special').onmouseover =
function () {

doSomething();
}

Separate them

Separation of HTML and JavaScript:

<input id=”special” />

$('special').onmouseover =
$('special').onfocus =

function () {
doSomething();

}

Separate them

Advantages

- Ease of maintenance
- The CSS and JavaScript layers can
 be edited simultaneously

Exercise:

Do you use inline event handlers?

If so, why?

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything

 - “JavaScript is always available”
 - “Everybody uses a mouse”

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything

 - “JavaScript is always available”
 - “Everybody uses a mouse”

JavaScript is always available

Nonsense!

JavaScript is always available

- Primitive cell phones don't support
 it (sufficiently)

- Speech browsers' support may be
 spotty

- Company networks may filter out
 <script> tags

JavaScript is always available

- Primitive cell phones don't support
 it (sufficiently)

- Speech browsers' support may be
 spotty

- Company networks may filter out
 <script> tags

Besides, the most
important scriptless user is

Exercise:

How does your site perform when
JavaScript is disabled?

JavaScript is always available

Make sure that the content and
navigation of the site can be used
without JavaScript.

JavaScript is always available

Make sure that the content and
navigation of the site can be used
without JavaScript.

The page will remain accessible in all
circumstances.

JavaScript is always available

Make sure that the content and
navigation of the site can be used
without JavaScript.

You can use JavaScript for nice
extras, though.

JavaScript is always available

However...

Without JavaScript the page will
become less user-friendly.

Can't be helped.

JavaScript is always available

However...

Without JavaScript the page will
become less user-friendly.

After all, the purpose of JavaScript is
to add interactivity to a page.

Exercise:

Can you make your navigation
accessible without JavaScript?

(We'll talk about the content
later.)

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything

 - “JavaScript is always available”
 - “Everybody uses a mouse”

Ajax Workshop

Part 2- Hijax

Hell is other browsers - Sartre

Jeremy Keith

High Performance
Web Sites

His idea: Hijax

Hijax

An Ajax site works with JavaScript

which means that it won't work

in browsers that don't support
JavaScript

Hijax

But there's a simple tool that will
help you make your Ajax site
somewhat accessible

the hyperlink
Text

Hijax

Links exist to lead users to a next
page

so if we can use them that way in
our Ajax sites, too

some accessibility problems
disappear

Hijax

Hijax

Hijax

Hijax

Hijax

Hijax

Hijax

Hijax

Hijax

Hijax

Hijax

Hijax

Hijax

However, every time the user
clicks on a link, the browser loads
a new page.

The site becomes less usable.
It's still accessible, though.

Hijax

How do you do this?

Start with a link
more info

You're going to need it for the
accessible version.

Hijax

more info

link.onclick = function () {
var dataFile = this.href.replace(/\.html/,'.xml');
sendRequest(dataFile);
return false;

}

Hijax

more info

link.onclick = function () {
var dataFile = this.href.replace(/\.html/,'.xml');
sendRequest(dataFile);
return false;

}

Hijax
<body>
<ul id=”navigation”>[etc.]
<form><input name=”search” />
<input type=”submit” value=”Search” />
<div id=”mainData”>
<p>The Futurix 3BT0-N3 is by far the best phone
in the world. Not only does it support Flarby 1.0
and Warblegarble, its users are universally of the
opinion that its high-fidelity implementation of
Huntigarby 3.5b is simply the best available.</p>
</div>
<div class=”footer”>We're great!</div>

Hijax
function sendRequest(file) {

var req = createXMLHttpRequest();
req.open(“GET”,file,true);
req.setRequestHeader('User-Agent','XMLHTTP')
req.onreadystatechange = function () {

[send back to caller];
}
req.send();

}

Hijax
function sendRequest(file) {

var req = createXMLHttpRequest();
req.open(“GET”,file,true);
req.setRequestHeader('User-Agent','XMLHTTP')
req.onreadystatechange = function () {

[send back to caller];
}
req.send();

}

Hijax
<body>
<ul id=”navigation”>[etc.]
<form><input name=”search” />
<input type=”submit” value=”Search” />
<div id=”mainData”>
<p>The Futurix 3BT0-N3 is by far the best phone
in the world. Not only does it support Flarby 1.0
and Warblegarble, its users are universally of the
opinion that its high-fidelity implementation of
Huntigarby 3.5b is simply the best available.</p>
</div>
<div class=”footer”>We're great!</div>

Exercise:

Determine how you can use Hijax
in your Ajax site.

Ajax Workshop

Part 3- Events

Hell is other browsers - Sartre

http://quirksmode.org/dom/events/

http://quirksmode.org/dom/events

Mouseover

and friends

The mouseover event fires when the
user's mouse enters an element .

The mouseout event fires when the
user's mouse leaves an element.

Perfect support

Dropdown menu <sigh />

Multimedialize

Sound
Java applets

Ajaxify

Web 2.0
Web 3.0
Web 4.0b

Dropdown menu <sigh />

Dropdown menu <sigh />

Dropdown menu <sigh />

Event bubbling has advantages.

var dropdown = {
init: function (dropdown) {

var x = dropdown.getElementsByTagName('a');
for (var i=0;i<x.length;i++) {

x[i].onmouseover = mouseOver;
x[i].onmouseout = mouseOut;

}
}

}

Dropdown menu <sigh />

Event bubbling has advantages.

var dropdown = {
init: function (dropdown) {

var x = dropdown.getElementsByTagName('a');
for (var i=0;i<x.length;i++) {

x[i].onmouseover = mouseOver;
x[i].onmouseout = mouseOut;

}
}

}

Dropdown menu <sigh />

Event bubbling has advantages.

var dropdown = {
init: function (dropdown) {

}
}

We don't do this any more. Instead
we use event delegation.

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = mouseOver;
dropdown.onmouseout = mouseOut;

}
}

The event bubbles up to the
anyway.

So why not handle it at that level?

Saves a lot of event handlers.

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = mouseOver;
dropdown.onmouseout = mouseOut;

}
}

Works in all browsers.

Exercise:

Do you use event delegation?

If not, how many event handlers
would you save if you did use it?

Dropdown menu <sigh />

Problem: Every mouseover or
mouseout event bubbles up.

Dropdown menu <sigh />

Dropdown menu <sigh />

a.mouseover
a.mouseout and a.mouseover
a.mouseout and a.mouseover
a.mouseout

Fun!
Event bubbling works.
As does event delegation.

Dropdown menu <sigh />

a.mouseover
a.mouseout and a.mouseover
a.mouseout and a.mouseover
a.mouseout

But has the mouse left the submenu or
not?!

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

},
mouseOut: function (e) {

if (this mouseout is important) {
this.closeSubMenu();

}
}

}

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

},
mouseOut: function (e) {

if (this mouseout is important) {
this.closeSubMenu();

}
}

}
Development time: about 10 minutes

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

},
mouseOut: function (e) {

if (this mouseout is important) {
this.closeSubMenu();

}
}

}
Development time: about 2 days

Dropdown menu <sigh />

How do we do this?

onmouseout, find out which element
the mouse goes to.

If that element is not a part of the
submenu, fold the submenu.

Dropdown menu <sigh />

How do we do this?

mouseOut: function (e) {
e = e || window.event;
var el = e.relatedTarget || e.toElement;
if (!submenu.contains(el)) {

this.closeSubMenu();
}

}

Dropdown menu <sigh />

Find the element the mouse goes to.

mouseOut: function (e) {
e = e || window.event;
var el = e.relatedTarget || e.toElement;
if (!submenu.contains(el)) {

this.closeSubMenu();
}

}

Dropdown menu <sigh />

Find the element the mouse goes to.

mouseOut: function (e) {
e = e || window.event;
var el = e.relatedTarget || e.toElement;
if (!submenu.contains(el)) {

this.closeSubMenu();
}

}

Dropdown menu <sigh />

Find the element the mouse goes to.

mouseOut: function (e) {
e = e || window.event;
var el = e.relatedTarget || e.toElement;
if (!submenu.contains(el)) {

this.closeSubMenu();
}

}

Dropdown menu <sigh />

See whether that element is contained
by the submenu.

mouseOut: function (e) {
e = e || window.event;
var el = e.relatedTarget || e.toElement;
if (!submenu.contains(el)) {

this.closeSubMenu();
}

}

Dropdown menu <sigh />

See whether that element is contained
by the submenu.

mouseOut: function (e) {
e = e || window.event;
var el = e.relatedTarget || e.toElement;
if (!submenu.contains(el)) {

this.closeSubMenu();
}

}

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

},
mouseOut: function (e) {

e = e || window.event;
var el = e.relatedTarget || e.toElement;
if (!submenu.contains(el)) {

this.closeSubMenu();
}

}

Dropdown menu <sigh />

mouseOut: function (e) {
e = e || window.event;
var el = e.relatedTarget || e.toElement;
if (!submenu.contains(el)) {

this.closeSubMenu();
}

}

That's it, right?

<grin type=”evil” />

Dropdown menu <sigh />

Wrong!

Suppose someone doesn't use a mouse
at all,

but the keyboard

how does the menu fold out?

Unobtrusive JavaScript

Two fundamental principles:

1) Separation of structure,
 presentation, and behavior
2) The script doesn't assume
 anything

 - “JavaScript is always available”
 - “Everybody uses a mouse”

Everybody uses a mouse

Nonsense!

Device
independence

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

}
}

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

}
}

Doesn't work without a mouse.

Exercise:

Do you use mouseover and
mouseout without paying
attention to keyboard users?

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

}
}

We need events that tell us whether
the user enters or leaves a link.
focus and blur

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover =
dropdown.onfocus = this.mouseOver;

dropdown.onmouseout =
dropdown.onblur = this.mouseOut;

}
}

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover =
dropdown.onfocus = this.mouseOver;

dropdown.onmouseout =
dropdown.onblur = this.mouseOut;

}
}

Doesn't work.

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover =
dropdown.onfocus = this.mouseOver;

dropdown.onmouseout =
dropdown.onblur = this.mouseOut;

}
}

Focus and blur don't bubble.

To bubble or not to bubble

Two kinds of events:
1) Mouse and key events
2) Interface events

To bubble or not to bubble

Two kinds of events:
1) Mouse and key events
2) Interface events

Fire when the user has taken a certain
action.
mouseover, mouseout, click, keydown,
keypress

To bubble or not to bubble

Two kinds of events:
1) Mouse and key events
2) Interface events

In general they bubble

To bubble or not to bubble

Two kinds of events:
1) Mouse and key events
2) Interface events

Fire when a certain event takes place,
regardless of how it was initialised.
load, change, submit, focus, blur

To bubble or not to bubble

Two kinds of events:
1) Mouse and key events
2) Interface events

Generally don't bubble

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

}
}

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;
var x = dropdown.getElementsByTagName('li');
for (var i=0;i<x.length;i++) {

x[i].onfocus = this.mouseOver;
x[i].onblur = this.mouseOut;

}
}

}

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;
var x = dropdown.getElementsByTagName('li');
for (var i=0;i<x.length;i++) {

x[i].onfocus = this.mouseOver;
x[i].onblur = this.mouseOut;

}
}

}
Doesn't work.

Dropdown menu <sigh />

The HTML elements must be able to
receive the keyboard focus.

- links
- form fields

Dropdown menu <sigh />

The HTML elements must be able to
receive the keyboard focus.

- links
- form fields
- elements with tabindex

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;
var x = dropdown.getElementsByTagName('li');
for (var i=0;i<x.length;i++) {

x[i].onfocus = this.mouseOver;
x[i].onblur = this.mouseOut;

}
}

}

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;
var x = dropdown.getElementsByTagName('a');
for (var i=0;i<x.length;i++) {

x[i].onfocus = this.mouseOver;
x[i].onblur = this.mouseOut;

}
}

}

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;
var x = dropdown.getElementsByTagName('a');
for (var i=0;i<x.length;i++) {

x[i].onfocus = this.mouseOver;
x[i].onblur = this.mouseOut;

}
}

}

And what about click?

We're in luck: click also fires when the
user activates an element by keyboard.

Restriction:
the element must be able to receive
the keyboard focus

Exercise:

If you added focus and blur
events, would they call the same
function, or would you have to
write new ones?

The key events

keydown
When a key is depressed.

 Repeats.
keypress

keyup

keydown
When a key is depressed.

 Repeats.
keypress

When a character key is
 depressed.

Repeats.
keyup

keydown
When a key is depressed.

 Repeats.
keypress

When a character key is
 depressed.

Repeats.
keyup

When a key is released.

keydown and keypress

keydown only

Originally this theory was created
by Microsoft.

Recently Safari 3.1 has copied it.

It's the only theory; Firefox and
Opera just fire some random
events.

keydown
When a key is depressed.

 Repeats.
keypress

 When a character key is
 depressed.
 Repeats.

Exercise:

Which key events do you use?
Keydown or keypress? Why?

Which key did my user press?

Two properties:
keyCode and charCode

Two bits of data:
- the key code
- the character code

Which key did my user press?

Obviously, having one property
contain one bit of data and the other
property the other

would be far too simple.

Which key did my user press?

Two properties:
keyCode and charCode

And what about W3C?

Which key did my user press?

Two properties:
keyCode and charCode
keyIdentifier

And what about W3C?

Which key did my user press?

keyCode

- onkeydown: key code
- onkeypress: ASCII value

Which key did my user press?

charCode

- onkeydown: 0
- onkeypress: ASCII value

Which key did my user press?

keyIdentifier

- A name, such as “Shift”, or a code
 such as “U+000041” (hexadecimal
 65) for “a”

Which key did my user press?

If you need the key:

el.onkeydown = function (e) {
e = e || window.event;
var realKey = e.keyCode;

}

Which key did my user press?

If you need the key:

el.onkeydown = function (e) {
e = e || window.event;
var realKey = e.keyCode;

}

Which key did my user press?

If you need the character:

el.onkeypress = function (e) {
e = e || window.event;
var char = e.keyCode || e.charCode;

}

Which key did my user press?

If you need the character:

el.onkeypress = function (e) {
e = e || window.event;
var char = e.keyCode || e.charCode;

}

How can I prevent the default action?

el.onkeydown = function (e) {
e = e || window.event;
var key = e.keyCode;
if (key is incorrect) {

// cancel default action
}

}

How can I prevent the default action?

el.onkeydown = function (e) {
e = e || window.event;
var key = e.keyCode;
if (key is incorrect) {

// cancel default action
}

}

Separate concepts

Drag-and-drop
uses the mousemove event

Separate concepts

Drag-and-drop
uses the mousemove event

and if there's one thing that's
impossible to emulate with the
keyboard

it's moving the mouse

Separate concepts

Drag-and-drop
uses the mousemove event

How do we make this accessible?

By allowing the user to use the arrow
keys.
Key events.

Separate concepts

Drag-and-drop

obj.onmousemove =
obj.onkeydown = moveElement;

Separate concepts

Drag-and-drop

obj.onmousemove =
obj.onkeydown = moveElement;

Doesn't work.

Separate concepts

Drag-and-drop

obj.onmousemove =
obj.onkeydown = moveElement;

Mousemove expects mouse
coordinates.
The layer moves to these coordinates.

Separate concepts

Drag-and-drop

obj.onmousemove =
obj.onkeydown = moveElement;

The key events expect a keystroke.

But what does “user hits right arrow
once” mean?

Separate concepts

Drag-and-drop

obj.onmousemove =
obj.onkeydown = moveElement;

10px?
50px?
“Move to next receptor element?”
Something else that fits your interface?

Separate concepts

Drag-and-drop

obj.onmousemove =
obj.onkeydown = moveElement;

We have to program for two totally
different situations.
We need separate scripts.

Separate concepts

Drag-and-drop

obj.onmousemove = moveByMouse;
obj.onkeydown = moveByKeys;

We have to program for two totally
different situations.
We need separate scripts.

Separate concepts

Drag-and-drop

obj.onmousemove = moveByMouse;
obj.onkeydown = moveByKeys;

Yes, that's more work.

Separate concepts

Drag-and-drop

obj.onmousemove = moveByMouse;
obj.onkeydown = moveByKeys;

But if you do it right you've got a
generic drag and drop module you can
use anywhere.

Separate concepts

Drag-and-drop

obj.onmousemove = moveByMouse;
obj.onkeydown = moveByKeys;

Besides, I created a first draft for you.

Separate concepts

Drag-and-drop

http://quirksmode.org/
js/dragdrop.html

Besides, I created a first draft for you.

http://quirksmode.org/

Exercise:

Do you have a mouse-driven
functionality that you have to
write new functions for if you
make them keyboard-accessible?
How would you write such new
functions?

Ajax Workshop

Part 4- Performance

Hell is other browsers - Sartre

Steve Souders

High Performance
Web Sites

Buy this book.

You'll need it.

Rules:
1) Make fewer HTTP requests
2) Use a Content Delivery Network
3) Add an Expires header
4) Gzip components
5) Put stylesheets at the top
6) Put scripts at the bottom
7) Avoid CSS expressions
8) Make JavaScript and CSS external
9) Reduce DNS lookups
10) Minify JavaScript
11) Avoid redirects
12) Remove duplicate scripts

Rules:
1) Make fewer HTTP requests
2) Use a Content Delivery Network
3) Add an Expires header
4) Gzip components
5) Put stylesheets at the top
6) Put scripts at the bottom
7) Avoid CSS expressions
8) Make JavaScript and CSS external
9) Reduce DNS lookups
10) Minify JavaScript
11) Avoid redirects
12) Remove duplicate scripts

Rules:
1) Make fewer HTTP requests
4) Gzip components
5) Put stylesheets at the top
6) Put scripts at the bottom
8) Make JavaScript and CSS external

Rules:
1) Make fewer HTTP requests
4) Gzip components
5) Put stylesheets at the top
6) Put scripts at the bottom
8) Make JavaScript and CSS external

It's better to use one CSS and one
JavaScript file than several of
each.
We'll get back to some other tricks
later.

Exercise:

Determine how many HTTP
requests your site makes.
Exclude dynamically loaded
assets.

Exercise:

Could you merge several
JavaScript files into one file?
Could you merge several CSS files
into one file?

Rules:
1) Make fewer HTTP requests
4) Gzip components
5) Put stylesheets at the top
6) Put scripts at the bottom
8) Make JavaScript and CSS external

All of them.
HTML, CSS, JavaScript, images.

Rules:
1) Make fewer HTTP requests
4) Gzip components
5) Put stylesheets at the top
6) Put scripts at the bottom
8) Make JavaScript and CSS external

The browser waits until the last
style sheet is loaded before
rendering the page.

Rules:
1) Make fewer HTTP requests
4) Gzip components
5) Put stylesheets at the top
6) Put scripts at the bottom
8) Make JavaScript and CSS external

Use <link> tags, and not @import.
@imported style sheet are loaded
LAST, which causes a blank screen
until ALL style sheets have been
loaded.

Rules:
1) Make fewer HTTP requests
4) Gzip components
5) Put stylesheets at the top
6) Put scripts at the bottom
8) Make JavaScript and CSS external

When the browser loads a script, it
blocks all other downloads
because the script might contain a
document.write()

Rules:
1) Make fewer HTTP requests
4) Gzip components
5) Put stylesheets at the top
6) Put scripts at the bottom
8) Make JavaScript and CSS external

Besides, when you put your script
at the bottom you don't need an
onload event handler.

Rules:
1) Make fewer HTTP requests
4) Gzip components
5) Put stylesheets at the top
6) Put scripts at the bottom
8) Make JavaScript and CSS external

External files will be cached, so
that the user will have to
download them only once.

Rules:
1) Make fewer HTTP requests
4) Gzip components
5) Put stylesheets at the top
6) Put scripts at the bottom
8) Make JavaScript and CSS external

Keep an iron grip on the assets
you have to load
and on their order of loading

Example: Project X

Site is meant for viewing images in
a nice, user-friendly environment.

To the users, it's all about the
images. They don't care about CSS
or JavaScript.

Exercise:

Determine which assets the
USERS of your site think most
important.

Example: Project X
Assets:

- HTML page
- Style sheet
- JavaScript file
- Data file (JSON)
- Background image 1
- Background image 2
- Background image 3
- Background image 4

16 HTTP requests. Slooooowwww

- Image 1
- Image 2
- Image 3
- Image 4
- Image 5
- Image 6
- Image 7
- Image 8

Example: Project X
Assets:

- HTML page
- Style sheet
- JavaScript file
- Data file (JSON)
- Background image 1
- Background image 2
- Background image 3
- Background image 4

We'll get back to the images later.

- Image 1
- Image 2
- Image 3
- Image 4
- Image 5
- Image 6
- Image 7
- Image 8

Example: Project X
Assets:

- HTML page
- Style sheet
- JavaScript file
- Data file (JSON)
- Background image 1
- Background image 2
- Background image 3
- Background image 4

Reduce number of HTTP requests

Example: Project X
Assets:

- HTML page
- Style sheet
- JavaScript file
- Data file (JSON)
- Background image 1
- Background image 2
- Background image 3
- Background image 4

Example: Project X
Assets:

- Background image 1
- Background image 2
- Background image 3
- Background image 4

All background images in one file.
CSS Sprites.

Example: Project X
Assets:

- Background image 1
- Background image 2
- Background image 3
- Background image 4

All background images in one file.
CSS Sprites.
Saves 3 HTTP requests.

CSS Sprites

div.nav a {
background: url(pix/bg1.gif) no-repeat;

}

div.nav a:hover {
background: url(pix/bg2.gif) no-repeat;

}

div.nav a.special {
background: url(pix/bg3.gif) no-repeat;

}

CSS Sprites

CSS Sprites

 sprite.gif

 Use background-position
 to select the part of the

 sprite that's visible

CSS Sprites

div.nav a {
background: url(pix/sprite.gif) no-repeat;
background-position: 10px 10px;

}

div.nav a:hover {
background-position: -40px 10px;

}

div.nav a.special {
background-position: -90px 10px;

}

Example: Project X
Assets:

- HTML page
- Style sheet
- JavaScript file
- Data file (JSON)
- Background image 1
- Background image 2
- Background image 3
- Background image 4

Example: Project X
Assets:

- HTML page
- Style sheet
- JavaScript file
- Data file (JSON)
- Background image sprite

Exercise:

How many HTTP requests can you
save by using CSS Sprites?

Example: Project X
Assets:

- HTML page
- Style sheet
- JavaScript file
- Data file (JSON)
- Background image sprite

Gzip all these assets. It'll save
some download time.

Example: Project X

<html>
<head>

<title>Image viewer</title>
<link rel=”stylesheet” href=”styles.css”>
<script src=”js.js”></script>

</head>
<body>

<div id=”viewer”>
<!-- Filled by Ajax -->

</div>
</body>
</html>

Example: Project X

<html>
<head>

<title>Image viewer</title>
<link rel=”stylesheet” href=”styles.css”>
<script src=”js.js”></script>

</head>
<body>

<div id=”viewer”>
<!-- Filled by Ajax -->

</div>
</body>
</html>

2

- Request for CSS
- Request for CSS sprite

Example: Project X

<html>
<head>

<title>Image viewer</title>
<link rel=”stylesheet” href=”styles.css”>
<script src=”js.js”></script>

</head>
<body>

<div id=”viewer”>
<!-- Filled by Ajax -->

</div>
</body>
</html>

4

- Request for JS (block)
- Request for JSON

Example: Project X

<html>
<head>

<title>Image viewer</title>
<link rel=”stylesheet” href=”styles.css”>
<script src=”js.js”></script>

</head>
<body>

<div id=”viewer”>
<!-- Filled by Ajax -->

</div>
</body>
</html>

5

- Request for image

Example: Project X

<html>
<head>

<title>Image viewer</title>
<link rel=”stylesheet” href=”styles.css”>
<script src=”js.js”></script>

</head>
<body>

<div id=”viewer”>
<!-- Filled by Ajax -->

</div>
</body>
</html>

The image, which is
what the user really
wants to see, is the fifth
asset to be loaded.

Exercise:

How many assets do you load
BEFORE the first asset that the
user thinks is important, is
downloaded?

Example: Project X

<html>
<head>

<title>Image viewer</title>
<link rel=”stylesheet” href=”styles.css”>
<script src=”js.js”></script>

</head>
<body>

<div id=”viewer”>
<!-- Filled by Ajax -->

</div>
</body>
</html>

Example: Project X

<html>
<head>

<title>Image viewer</title>
<link rel=”stylesheet” href=”styles.css”>
<script src=”js.js”></script>

</head>
<body>

<div id=”viewer”>

</div>
</body>
</html>

Still the fifth asset.

Example: Project X

<html>
<head>

<title>Image viewer</title>
<link rel=”stylesheet” href=”styles.css”>

</head>
<body>

<div id=”viewer”>

</div>
<script src=”js.js”></script>

</body>
</html>

Now it's the third asset.

Example: Project X

<html>
<head>

<title>Image viewer</title>
<link rel=”stylesheet” href=”styles.css”>

</head>
<body>

<div id=”viewer”>

</div>
<script src=”js.js”></script>

</body>
</html>

Exercise:

Do you put your scripts at the
bottom of the page?

Do you have problems with onload
event handlers? They'd be solved.

Rules:
1) Make fewer HTTP requests
4) Gzip components
5) Put stylesheets at the top
6) Put scripts at the bottom
8) Make JavaScript and CSS external

Keep an iron grip on the assets
you have to load
and on their order of loading

Ajax Workshop

The End

Hell is other browsers - Sartre

