

The touch events

Peter-Paul Koch (ppk)
http://quirksmode.org
http://twitter.com/ppk

 DIBI, 28 April 2010

Hell is other browsers - Sartre

http://quirksmode.org/

The desktop web

Boring!

- Only five browsers
- with only one viewport each
- that support nearly everything
- Even IE? Yes, even IE.

The Mobile Web

Exciting!

- Fifteen browsers and counting
- ranging from great to lousy
- Interesting new bugs
- About five times as many users as the
 desktop web (eventually)
- New interaction modes

The Mobile Web

Exciting!

- Fifteen browsers and counting
- ranging from great to lousy
- Interesting new bugs
- About five times as many users as the
 desktop web (eventually)
- New interaction modes

Before we start

please open the following link on your
iPhone or Android:

http://quirksmode.org/touchevents

It gives links to the test files.

Mouse

Mouse

Keyboard

Mouse

Keyboard

Touch

MouseKeyboard users need different
interaction than mouse users
need different interactions than touch
users.

Your script accomodates all three
modes, right?

It's all a question of events.

keydown
keypress
keyup

mouseover
mouseout
mousedown
mouseup
mousemove

touchstart
touchmove
touchend
touchcancel

It's not an either-or proposition.

It's not an either-or proposition.

The Nokia E71
has a four-way
navigation.
Works like the
arrow keys
(including
keycodes).

But...

It's not an either-or proposition.

But...
the “arrow keys”
steer a mouse
cursor.

Key events
and mouse
events

Today we'll concentrate on the touch
events, though.

Touch !== mouse

- Area
- Pressure
- Temperature
- more than one touch

http://quirksmode.org/touchevents

Open the first dropdown example.

Task: Click on option 3.2

This is with traditional mouseover and
mouseout; no touch-specific code.
Works (a bit oddly, but works).

dropdown.onmouseover = function (e) {
// open dropdown
dropdown.onmouseout = function (e) {

// close dropdown
// if appropriate
dropdown.onmouseout = null

}
}

http://quirksmode.org/touchevents

Now open the second dropdown
example.

Task: Click on option 3.2

Doesn't work.

dropdown.onmouseovertouchstart
= function (e) {
// open dropdown
dropdown.onmouseouttouchend

 = function (e) {
// close dropdown
// if appropriate
dropdown.onmouseout = null

}
}

Not an entirely fair comparison.

Not an entirely fair comparison.

Touchstart and touchend are not the
equivalents of mouseover and
mouseout.

Still, there is no better option.
Besides, it shows how different touch
interaction is from mouse interaction.

Interaction modes
Mouse
mousedown
mousemove
mouseup
mouseover
mouseout
All

Keyboard
keydown
keypress
keyup
focus
blur
All

Touch
touchstart
touchmove
touchend
-
-
iPhone,
Android

There is no true hover on a touchscreen.

No way of saying “I might be interested
in this element but I'm not sure yet.”

Instead, the mobile browsers fake
mouseover/out and :hover.
(We'll see how later.)

Interaction modes
Mouse
mousedown
mousemove
mouseup
mouseover
mouseout

Touch
touchstart
touchmove
touchend
-
-

Keyboard
keydown
keypress
keyup
focus
blur

load, unload, click, submit, resize,
zoom, change etc. etc.

Interaction modes
Mouse
mousedown
mousemove
mouseup
mouseover
mouseout

Keyboard
keydown
keypress
keyup
focus
blur

Touch
touchstart
touchmove
touchend
-
-

load, unload, click, submit, resize,
zoom, change etc. etc.

Interaction modes
Mouse
mousedown
mousemove
mouseup
mouseover
mouseout

Keyboard
keydown
keypress
keyup
focus
blur

Touch
touchstart
touchmove
touchend
-
-

load, unload, click, submit, resize,
zoom, change etc. etc.

Interaction modes
Mouse
mousedown
mousemove
mouseup
mouseover
mouseout

Keyboard
keydown
keypress
keyup
focus
blur

Touch
touchstart
touchmove
touchend
-
-

load, unload, click, submit, resize,
zoom, change etc. etc.

In theory a touchscreen device should
fire only the touch events, and not the
mouse events.

However, too many websites depend on
the mouse events, so touch browser
vendors are forced to support them,
too.

Therefore, when you touch the screen of
a touchscreen, both touch and mouse
events fire.

But the mouse events are a bit special.
They all fire at the same time.

http://quirksmode.org/touchevents

You can test the events for yourself at
the touch action test page.

touchstart
mouseover
mousemove (only one!)
mousedown
mouseup
click
:hover styles applied

When the user touches another element
mouseout
:hover styles removed

On the iPhone this element must listen
to events. If it doesn't, it's not clickable
and events do not fire.

touchstart
mouseover
mousemove
mousedown
mouseup
click
:hover styles applied

If a DOM change occurs
onmouseover or
onmousemove, the rest
of the events is cancelled.
(iPhone and Symbian)

http://quirksmode.org/touchevents

Now open the first drag-and-drop
example.

Should work fine; both on touch devices
and with a mouse.

This is very simple.

element.onmousedown = function (e) {
// initialise
document.onmousemove = function (e) {

// move
}
document.onmouseup = function (e) {

document.onmousemove = null;
document.onmouseup = null;

}
}

element.onmousedown = function (e) {
// initialise
document.onmousemove = function (e) {

// move
}
document.onmouseup = function (e) {

document.onmousemove = null;
document.onmouseup = null;

}
}

Set mousemove and mouseup handlers only
when mousedown has taken place.
May save some processing time; especially
on mobile.

element.onmousedown = function (e) {
// initialise
document.onmousemove = function (e) {

// move
}
document.onmouseup = function (e) {

document.onmousemove = null;
document.onmouseup = null;

}
}

Set mousemove and mouseup handlers on
the document.
Helps when user moves too fast and
“overshoots”: the script remains functional.

element.onmousedown = function (e) {
// initialise
document.onmousemove = function (e) {

// move
}
document.onmouseup = function (e) {

document.onmousemove = null;
document.onmouseup = null;

}
}

element.ontouchstart = function (e) {
// initialise
document.ontouchmove = function (e) {

// move
}
document.ontouchend = function (e) {

document.ontouchmove = null;
document.ontouchend = null;

}
}

But: how do we know which events to
use? How do we know whether a user
uses a mouse or a touchscreen?

element.onmousedown = function (e) {
document.onmousemove = etc.
document.onmouseup = etc.

}

element.ontouchstart = function (e) {
document.ontouchmove = etc.
document.ontouchend = etc.

}

element.onmousedown = function (e) {
document.onmousemove = etc.
document.onmouseup = etc.

}

element.ontouchstart = function (e) {
element.onmousedown = null;
document.ontouchmove = etc.
document.ontouchend = etc.

}

Remove the mousedown event handler when
a touchstart takes place: now you're certain
that the user uses a touchscreen.

http://quirksmode.org/touchevents

Now open the second drag-and-drop
example.

iPhone only.
Try dragging two or all three layers
simultaneously.
(A bit stilted, but you get the point.)

This is impossible on a desktop
computer. Two mice?

Useful for games, maybe (especially on
the iPad).

Does not work on Android: the browser
doesn't (yet) support true multitouch.

http://quirksmode.org/touchevents

Now open the scrolling layer example.

Works fine – on mobile.
But how do we port this to the other
interaction modes?
- keys: use arrow keys
- mouse: ???

Interaction modes

- mouse
- keyboard
- touch
- and a fourth....

Interaction modes

- mouse
- keyboard
- touch
- trackball

Generally fires a
mousemove event

Thank you!
Questions?

http://quirksmode.org
http://twitter.com/ppk

http://quirksmode.org/

