
  

Ajax at Work: 
A Case Study

Peter-Paul Koch (ppk)
http://www.quirksmode.org

http://www.quirksmode.org/


  

Why Ajax?

Enhancing customer expectations



  

WhyWhy Ajax? 

Because it's popular! 



  

WhyWhy Ajax? 

Because it's the future! 



  

WhyWhy Ajax? 

Because clients want to score! 



  

WhyWhy Ajax JavaScript?

The purpose of JavaScript is 
adding usability to a web page.

Ideally the page should remain 
accessible, though. 

  



  

WhyWhy Ajax JavaScript?

Use JavaScript only if it gives a 
significant usability benefit over 
a non-scripted page.



  

WhySo what do we use Ajax for?  



  

Why



  

Why



  

Why
So what do we use Ajax for?

Emulating frames

<frameset rows=”150,*”>

<frame src=”header.html” />

<frame src=”thumbs.html” />

</frameset>

  



  

Why
So what do we use Ajax for?

Emulating frames

<frameset rows=”150,*”>

<frame src=”header.html” />

<frame src=”thumbs.html” />

</frameset>

  

Is this what Ajax is all about?



  

Why



  

Why



  



  



  



  



  

Why
So what do we use Ajax for?

Sending queries and receiving 
responses. Pretty standard 
nowadays.

Still, we could do this with 
frames, too, if we really 
wanted.
  



  

Why
(Personal opinion warning)

The less our application 
emulates frames, the more 
Ajaxy it becomes.

  



  

Why
(Personal opinion warning)

Whenever you conceive an 
Ajax-application, ask yourself 
if frames could do the job, 
too.

  



  

Why
(Personal opinion warning)

If the answer is “Yes, easily”

ask yourself whether you 
really need Ajax .

  



  

Today's case study

An interactive family tree
of the Plantagenets & Tudors

(1216-1603)

Ajax is used for fetching new data
(The real trouble lies in the display of the data. 
That's not today's subject, though.)



  

An interactive family tree
of the Plantagenets & Tudors

(1216-1603)

See it live at http://quirksmode.org/familytree/

Firefox and Safari only – for now

http://quirksmode.org/familytree/


  

Getting the family tree data 
from the server is clearly a 
job for Ajax.



  



  



  



  

We can't really do this with 
frames.

Ajax is  the only solution.
 



  

So what do we use Ajax for?

Data mining

Getting data from server is a 
job for Ajax

Displaying the results needs 
some DOM scripting (which 
isn't Ajax, strictly speaking), as 
well as a lot of CSS



  

So what do we use Ajax for?

Data mining

Getting data from server is a 
job for Ajax

Displaying the results needs 
some DOM scripting (which 
isn't Ajax, strictly speaking), as 
well as a lot of CSS
 



  

Getting data from server 



  

<person id="15">
<name>

<short>Richard II</short>
</name>
<birth>1365</birth><death>1400</death>
<father idref="3">Edward</father>
<mother idref="8">Joan</mother>
<ranks>

<rank>
<predecessor idref="1">Edward III</predecessor>
<title>King of England</title>
<start>1377</start>
<end>1399</end>
<successor idref="17">Henry IV</successor>

</rank>
</ranks>

</person>



  

Why XML?

Facilitating existing technologies



  

Why XML?

AJAX
Asynchronous JavaScript and 

XML



  

zdasf

Why XML?

AJAX
Asynchronous JavaScript and 

XML
Ajax doesn't need XML.

XML is just one possibility.



  

●Sending data to client
●

●1. XML
●2. JSON
●3. HTML
●4. CSV
●



  

XML
<person id="15">

<name>
<short>Richard II</short>

</name>
<birth>1365</birth><death>1400</death>
<father idref="3">Edward</father>
<mother idref="8">Joan</mother>
<ranks>

<rank>
<predecessor idref="1">Edward III</predecessor>
<title>King of England</title>
<start>1377</start>
<end>1399</end>
<successor idref="17">Henry IV</successor>

</rank>
</ranks>

</person>



  

XML
<person id="15">

<name>
<short>Richard II</short>

</name>
<birth>1365</birth><death>1400</death>
<father idref="3">Edward</father>
<mother idref="8">Joan</mother>
<ranks>

<rank>
<predecessor idref="1">Edward III</predecessor>
<title>King of England</title>
<start>1377</start>
<end>1399</end>
<successor idref="17">Henry IV</successor>

</rank>
</ranks>

</person>



  

XML

Read out the name:

person.getElementsByTagName('short')[0].
firstChild.nodeValue



  

XML

Advantages
* Humans can read XML
* Many languages have XML support
   and use the W3C DOM

Disadvantages
* Verbose and clunky



  

JSON
{

"name": {"short": "Richard II"},
"birth": "1365",
"death": "1400",
"father": {"idref": "3","name": "Edward"},
"mother": {"idref": "8","name": "Joan"},
"ranks": {

{
"title": "King of England",
"start": "1377",
"end": "1399",
"predecessor": {"name": "Edward III","idref": "1"},
"successor": {"name": "Henry IV","idref": "17"}

},
}

}



  

JSON

Read out the name:

person.name.short



  

JSON
{

"name": {"short": "Richard II"},
"birth": "1365",
"death": "1400",
"father": {"idref": "3","name": "Edward"},
"mother": {"idref": "8","name": "Joan"},
"ranks": {

{
"title": "King of England",
"start": "1377",
"end": "1399",
"predecessor": {"name": "Edward III","idref": "1"},
"successor": {"name": "Henry IV","idref": "17"}

},
}

}



  

JSON
{

"name": {"short": "Richard II"},
"birth": "1365",
"death": "1400",
"father": {"idref": "3","name": "Edward"},
"mother": {"idref": "8","name": "Joan"},
"ranks": {

{
"title": "King of England",
"start": "1377",
"end": "1399",
"predecessor": {"name": "Edward III","idref": "1"},
"successor": {"name": "Henry IV","idref": "17"}

},
}

}

Can you spot the error?



  

JSON
{

"name": {"short": "Richard II"},
"birth": "1365",
"death": "1400",
"father": {"idref": "3","name": "Edward"},
"mother": {"idref": "8","name": "Joan"},
"ranks": {

{
"title": "King of England",
"start": "1377",
"end": "1399",
"predecessor": {"name": "Edward III","idref": "1"},
"successor": {"name": "Henry IV","idref": "17"}

},
}

}



  

JSON
{

"name": {"short": "Richard II"},
"birth": "1365",
"death": "1400",
"father": {"idref": "3","name": "Edward"},
"mother": {"idref": "8","name": "Joan"},
"ranks": {

{
"title": "King of England",
"start": "1377",
"end": "1399",
"predecessor": {"name": "Edward III","idref": "1"},
"successor": {"name": "Henry IV","idref": "17"}

},
}

}



  

JSON

Advantages
* Same functionality as XML, but    
   lighter

Disadvantages
* Relatively unknown outside geek  
   circles (as yet)
* Less human-readable; hard to       
   check by eye alone



  

HTML

<div class="person king">
<h2>Richard II

<small>King of England</small>
</h2>
<p>1365 - 1400</p>

</div>



  

HTML

<div class="person king"
father="3" mother="8" 
predecessor="1" successor="17">
<h2>Richard II

<small>King of England</small>
</h2>
<p>1365 - 1400</p>

</div>



  

HTML

<div class="person king 
father=3 mother=8 predecessor=1 successor=17">

<h2>Richard II
<small>King of England</small>

</h2>
<p>1365 - 1400</p>

</div>



  

HTML

Advantages
* Really simple
* Best for accessibility

Disadvantages
* Relational data difficult to                
   incorporate



  

CSV

Richard II,1365,1400,Edward,3,Joan,8,King of 
England,1377,1399,Edward III,1,Henry IV,17



  

CSV

Richard II,1365,1400,Edward,3,Joan,8,King of 
England,1377,1399,Edward III,1,Henry IV,17

Who's this Edward?



  

CSV

Advantages
* Easy to parse for programming     
   languages

Disadvantages
* No meta-data
* Not human-readable



  

Decision time

Which format did I choose and 
why?

CSV
HTML
XML
JSON



  

Decision time

Which format did I choose and 
why?

CSV: no meta-data
HTML
XML
JSON



  

Decision time

Which format did I choose and 
why?

CSV: no meta-data
HTML
XML
JSON



  

Decision time

Which format did I choose and 
why?

CSV: no meta-data
HTML: 

* unsuited for relational data
* there are no pages, so no
   accessibility benefit

XML
JSON



  

Decision time

Which format did I choose and 
why?

CSV: no meta-data
HTML: 

* unsuited for relational data
* there are no pages, so no
   accessibility benefit

XML
JSON



  

Decision time

Which format did I choose and 
why?

CSV: no meta-data
HTML: 

* unsuited for relational data
* there are no pages, so no
   accessibility benefit

XML
JSON: social factors



  

Decision time

Which format did I choose and 
why?

CSV: no meta-data
HTML: 

* unsuited for relational data
* there are no pages, so no
   accessibility benefit

XML
JSON: social factors



  

Social factors

JSON is relatively unknown (as 
yet).

Therefore, company X, which is 
going to produce the database, 
may not know how to work with 
JSON.



  

Social factors - XML

Me: 
“Hello, I'd like you to send me my 
data in XML."

Them:
“Yes, of course! We just bought 
this £60,000 component that does 
exactly that.”



  

Social factors - XML

Me: 
“Hello, I'd like you to send me my 
data in XML."

Them:
“Yes, of course! We just bought 
this £60,000 component that does 
exactly that.”



  

Social factors - JSON

Me: 
“Hello, I'd like you to send me my 
data in JSON"

Them [confused]:
“In what?”

Communication enters danger 
zone.



  

Social factors - JSON

Me: 
“JSON, you know, the light-weight 
data interchange format invented 
by Douglas Crockford."

Them:
“Erm ... well ... we're focusing on 
enterprise-wide leveraging 
software right now, so I'm not sure 
this is going to work.”



  

Social factors - JSON

Me: 
“JSON, the light-weight data 
interchange format invented by 
Douglas Crockford."

Them:
“Erm ... well ... we're focusing on 
enterprise-wide leveraging 
software right now, so I'm not sure 
this relationship is going to work.”

Total communication breakdown



  

Social factors

You cannot assume that every 
server-side party knows JSON.

You can assume that every server-
side party knows XML.

For the moment XML is the safer 
choice when working with third 
parties.



  

Loading

Integrating timeless experiences



  

Situation

Right now I load all XML at once. 
120 Plantagenets, 46K.



  

When do we load our XML?



  

Situation

Right now I load all XML at once. 
120 Plantagenets, 46K.

Eventually the applications could 
contain all royal houses of Europe; 
thousands of persons.

We need a more sophisticated load 
strategy.



  

Load strategy

1) Store all data you receive, so that you 
    never have to request it again.               
    (Rather obvious.)

2) Define the problem: loading cascade.



  

Loading cascade – the situation

1) User clicks on Richard of York. The     
     new view needs Richard's children      
     and grandchildren.

2) Richard's XML contains his children. 
     Load these from server
     request('62','63','64','65','66');



  

Loading cascade – the situation

3) Once we have Richard's children, we  
     need their children.

4) Parse newly received XML and             
    extract their child IDs.

5) Load grandchildren.
      request('lots','of','ids');



  

Loading cascade – the situation

6) But what about more complicated       
     situations? Suppose the view needs    
     the parents-in-law of Richard's            
     children?

7) Load children, then spouses of             
     children, then parents of spouses.



  

Loading cascade – the situation

8) General problem: you don't know       
     which XML to load before other          
     XML has been parsed.



  

Load strategy

1) Store all data you receive, so that you 
    never have to request it again.               
    (Rather obvious.)

2) Define the problem: loading cascade.

3) Decide who will do the work:                
     JavaScript, or PHP.



  

Doing the work - JavaScript?

Receive XML, parse it for the IDs we 
need, and send out a new request.



  



  

Doing the work - JavaScript?

Receive XML, parse it for the IDs we 
need, and send out a new request.

Feasible, but in complicated situations 
you might need a few requests before 
you can show the data.



  



  

Doing the work - PHP?

Send request for something like
“/children/spouses/parents”

PHP interprets this as
1) Find children of selected person
2) Find their spouses
3) Find their parents



  



  

Doing the work - PHP?

Send request for something like
“/children/spouses/parents”

PHP interprets this as
1) Find children of selected person
2) Find their spouses
3) Find their parents

Then send back all this info in one XML 
file.



  



  

Decision time

Who will search for the data: 
JavaScript or PHP?                           

Partly depends on programming 
skills.



  

Decision time

General rule:

Assume the server is faster 
than the browser.                        
(Source: Yahoo!; see especially 
http://yuiblog.com/blog/2006/11/28/performance-
research-part-1/)



  

Decision time

So it's best to gather all XML files 
in PHP and send them to the 
browser in one batch.                        

One other possibility: preloading



  

Preloading

Preload data while the user is busy 
studying other data.

Hardly ever discussed; found only 
one article
(http://particletree.com/features/preloading-data-with-
ajax-and-json/)



  

Preloading

Problem: how do we know which 
data the user wants to see next?

We don't.         

Especially not in a dynamic 
environment such as family trees.     
      



  

Preloading

So preloading cannot be used for 
the time being.

We're left with the PHP solution.       
         



  

WhyConclusions

When an Ajax solution is 
proposed, always wonder if the 
same effect can be obtained by 
using frames.

If “Yes”, ask yourself whether 
Ajax is really needed.



  

WhyConclusions

Despite JSON being the better 
format in the long run, right 
now XML is the best way of 
communicating with the server.

NOT because of the “X” in Ajax
but because the average third 
party will have heard of it.
 



  

Why
Conclusions

My family tree application needs 
a sophisticated load strategy 
that allows for a loading 
cascade.

This topic is underreported.
 



  

Why
Conclusions

The server should do most of the 
data-collection work, because 
it's faster than the client.
 



  

Why
Conclusions

For the time being, there are 
more questions than answers 
when working with Ajax.

If you find answers, write them 
down and publish them!
 



  

Why

Thank you


