
The touch events
Peter-Paul Koch	


http://quirksmode.org 	

http://twitter.com/ppk 	


London JS, 13 February 2014 



The touch events
• touchstart: when the user touches the 

screen	


• touchmove: when the user moves his touch	


• touchend: when the user ends his touch	


• touchcancel: vague

Support: all mobile browsers except for IE and 
the proxy browsers.	

IE does it differently. We’ll get back to that.



Examples
• Please open the following page on your 

phone:	


• http://quirksmode.org/touchevents	


• It gives links to the test files I’ll refer to 
later	


• General touch events test page is the one I 
used most	


• If you have a Windows 8 device, be nice and 
show your neighbours what’s going on.

http://quirksmode.org/touchevents


1
 

Stick with	

click



Stick with click
• click is not a mouse event	


• click really means “activate”	


• “I am now going to use this element for its 
intended purpose”	


• Works everywhere. 	


• Will continue to work everywhere.	


• But: slow.  About 300ms delay between touch 
and the following of the link



The slowness of click
What does touching the screen mean?	


• “I want to click on this element”	


• “I want to scroll”	


• “I want to zoom”	


• “I want to hold my touch”	


• “I want to double-tap”

Thus, a single touchstart event doesn’t give 
enough clues. The OS needs to wait a little 
while to figure out what you mean. Hence 
the delay.



The slowness of click
What does touching the screen mean?	


• “I want to click on this element”	


• “I want to scroll”	


• “I want to zoom”	


• “I want to hold my touch”	


• “I want to double-tap”

Double-tap resembles a click most: the user’s 
finger leaves the screen before tapping again.



The slowness of click
The Chrome team is conducting an 
experiment:	


If the page uses width=device-width,	


the user doesn’t have to double-tap to zoom, 
so that interaction is suppressed	


and thus the delay is not needed.	


Let’s see how this experiment turns out.



The event 
cascade	
2

 



Event cascade

• touchstart	


• touchmove	


• touchend	


• possibly an interaction-
related event such as 
scroll or resize	


Type 1:  Any action but a single tap



Event cascade

• touchstart	


• touchend	


• mouseover	


• mousemove (one!)	


• mousedown	


• mouseup	


• click	


• :hover styles applied

Type 2: Single tap



Event cascade

• mouseout	


• :hover styles removed

Type 2: Single tap; ctd.	


When tapping another element



Example
• http://quirksmode.org/touchevents	


• Dropdown menu 1	


• Task: click on option 3.2	


• This is with mouse events. No touch events 
involved.	


• Mouseover fires when you touch an element, 
mouseout when you touch something else.



Event cascade

• touchstart	


• touchend	


•  mouseover	


•  mousemove (one!)	


•  … nothing

SAFARI: if a content change occurs 
onmouseover or onmousemove, the rest of 
the cascade is cancelled.



Event cascade
What is a content change?	


It turns out that Apple means a DOM change	


done through actual DOM methods such as 
appendChild()	


innerHTML does NOT count.	


Go figure…



Separate 
events?	
3

 



Keyboard Mouse Touch

keydown mousedown touchstart

(keydown/press) mousemove touchmove

keyup mouseup touchend

focus mouseover -

blur mouseout -

Separate events



onremotewiggle



ondoorclose



onnomorebeer



Does every 
interaction mode 

need its own events?



So far the answer 
has been	


YES	




Keyboard Mouse Touch

keydown mousedown touchstart

(keydown/press) mousemove touchmove

keyup mouseup touchend

focus mouseover -

blur mouseout -

Separate events



Keyboard Mouse Touch

keydown pointerdown

(keydown/press) pointermove

keyup pointerup

focus mouseover -

blur mouseout -

Converging events

This is Microsoft’s idea, and it merits careful 
consideration.



Example
• http://quirksmode.org/touchevents	


• Drag and drop	


• Works with mouse events	


• Needs minimal changes for touch events	


• But bigger ones for pointer events



Drag and drop
el.onmousedown = function () {	

el.onmousemove = function () {	

...	

}	

el.onmouseup = function () {	

el.onmousemove = null;	

}	

}



Drag and drop
el.onmousedown = el.ontouchstart = function () {	

el.onmousemove = el.ontouchmove = function () {	

...	

}	

el.onmouseup = el.ontouchend = function () {	

el.onmousemove = el.ontouchmove = null;	

}	

}



Drag and drop
el.ontouchstart = function () {	

el.ontouchmove = function () {	

...	

}	

el.ontouchend = function () {	

el.ontouchmove = null;	

}	

}



Touch events
el.ontouchstart = el.onmspointerdown = function () {	

el.ontouchmove = el.onmspointermove = function () {	

...	

}	

el.ontouchend = el.onmspointerup = function () {	

el.ontouchmove = el.onmspointermove = null;	

}	

}



Touch events
el.ontouchstart = el.onmspointerdown = function () {	

el.ontouchmove = el.onmspointermove = function () {	

...	

}	

el.ontouchend = el.onmspointerup = function () {	

el.ontouchmove = el.onmspointermove = null;	

}	

}

Doesn’t work.	


Why not?



Working 
with the 
Microsoft 

events	

4
 



Microsoft’s approach

It turns out that you have to add one line of 
CSS:	


!

!
-ms-touch-action: none;



Microsoft’s approach

It turns out that you have to add one line of 
CSS:	


!

!

And no, I don’t much like that.

-ms-touch-action: none;



Microsoft’s approach
Still, in practice you’re also canceling default 
actions when you use the touch events.	


So Microsoft just made it more explicit.	


One problem, though: your script cannot 
decide whether to handle an event or send it 
on to the browser. That decision must be 
taken in the CSS.	


Not nice.



These are the -ms-touch-action values. They 
tell the browser which gestures are allowed. 
Using an allowed gesture doesn’t trigger 
events.	


!

!

Microsoft’s approach

none            - nothing allowed	
auto            - everything allowed	
pan-x and pan-y - scrolling x or y	
pinch-zoom      - pinch-zooming	
double-tap-zoom - double-tap zooming	
manipulation    - everything 	

              except double-tap                                         



Example
• http://quirksmode.org/touchevents	


• -ms-touch-action	


• Here are all the values. Play with them.



Microsoft’s approach
I’m torn.	


Philosophically, Microsoft has a point.	


But couldn’t they make the actual code nicer?	


(Worse example coming up.)



Hover	
5
 



Keyboard Mouse Touch

keydown mousedown touchstart

(keydown/press) mousemove touchmove

keyup mouseup touchend

focus mouseover -

blur mouseout -

Separate events



Example
• http://quirksmode.org/touchevents	


• Dropdown menu 2	


• Task: click on option 3.2	


• Doesn’t work	


• Touchstart and touchend are not the 
equivalents of mouseover and mouseout	


• Touch events are discontinuous; while 
mouse events are continuous



No hover
• There is no hover on touchscreen devices	


• No way of saying “I might be interested in 
this element, but I’m not sure yet.”	


• Depends on continuous events	


• It’s technically very hard: device must 
detect finger above the screen	


• But even if it works your finger obscures 
the screen



No hover
• There is no hover on touchscreen devices	


• All our hover-based interactions have 
become old-fashioned overnight	


• Get used to it



Event 
properties	
6

 



Event info
el.onwhatever = function (e) {	

		 e.type; // the event type	

		 e.target; // the event target	

		 e.clientX/Y; // the event coordinates	

}

Works for the touch events.



Event info
el.onwhatever = function (e) {	

		 e.type; // the event type	

		 e.target; // the event target	

		 e.clientX/Y; // the event coordinates	

}

Works for the touch events.	


With one exception.



Event info
• touches array: contains all current touches	


• changedTouches array: contains all touches 
that changed and thus caused an event to 
fire	


• targetTouches array: contains all touches on 
the target element



Event info
• touches array: contains all current touches	


• changedTouches array: contains all touches 
that changed and thus caused an event to 
fire 	


• targetTouches array: contains all touches on 
the target element



Event info
function getCoors(e) {	

   var currentTouch = e.changedTouches[0];	

return [currentTouch.clientX, 		 	 	
	 currentTouch.clientY];	

}



Event info
• But not in the Microsoft model	


• The touches arrays don’t exist.	


• Instead, we just read out the coordinates in 
the old-fashioned way.	


• I think this is a good idea in 90% of the 
cases	


• but in the remaining 10% we actually need a 
list of touch actions taking place, and there 
isn’t any.



Event info
function getCoors(e) {	
   var currentTouch;	

if (event.changedTouches) {	
currentTouch = e.changedTouches[0];	

} else {	
currentTouch = e;	

}	
return [currentTouch.clientX, 		 	 	
	 currentTouch.clientY];	

}



Moving	
7
 



touchmove
• touchmove continues firing as long as the 

user’s finger is on the screen	


• even if it has left the element the event 
handler is defined on	


• MSPointerMove, on the other hand, stops 
firing when the user’s finger leaves the 
element



Example
• http://quirksmode.org/touchevents	


• Traditional and Microsoft move events	


• Be sure to move out of the test element. 
The traditional events continue firing; the 
Microsoft ones don’t.



Gestures
• The MSPointerMove event doesn’t continue 

firing when you leave the element.	


• But the MSGestureChange event does.	


• Which brings us to ...



Gesture 
events	
8

 



Gestures
• A coordinated action of two or more 

touches constitutes a gesture. Example: 
pinch-zoom	


• Apple (and only Apple) offers the 
gesturestart, gesturechange, and gestureend 
events that fire when a gesture takes place.	


• Still, I’ve never used them, and not just 
because of the lack of support in other 
browsers. Why do we need them?



Gestures

• gesturestart, gesturechange, and gestureend	


• gesturetap	


• gesturehold	


• contentzoom	


• and more

Microsoft offers a lot of extra events:	




Gestures

• gesturestart, gesturechange, and gestureend	


• gesturetap	


• gesturehold	


• contentzoom	


• and more

I think I’m in love ...	




Gestures

• gesturestart, gesturechange, and gestureend	


• gesturetap	


• gesturehold	


• contentzoom	


• and more

... except that they don’t work ...	




Gestures

• gesturestart, gesturechange, and gestureend	


• gesturetap	


• gesturehold	


• contentzoom	


• and more

Well, they do, but … it’s complicated	




MS gesture events
var MSGesture = new Gesture();	
MSGesture.target = el;	
el.onmspointerdown = function (e) {	
MSGesture.addPointer(e.pointerId);	

}	
el.onmsgesturestart = function () {	
...	

}



MS gesture events
var MSGesture = new Gesture();	
MSGesture.target = el;	
el.onmspointerdown = function (e) {	
MSGesture.addPointer(e.pointerId);	

}	
el.onmsgesturestart = function () {	
...	

}



MS gesture events
var MSGesture = new Gesture();	
MSGesture.target = el;	
el.onmspointerdown = function (e) {	
MSGesture.addPointer(e.pointerId);	

}	
el.onmsgesturestart = function () {	
...	

}



MS gesture events
var MSGesture = new Gesture();	
MSGesture.target = el;	
el.onmspointerdown = function (e) {	
MSGesture.addPointer(e.pointerId);	

}	
el.onmsgesturestart = function () {	
...	

}

And don’t forget our old friend:	


-ms-touch-action: none;



Gestures

• gesturestart, gesturechange, and gestureend	


• gesturetap	


• gesturehold	


• contentzoom	


• and more

... and even then contentzoom doesn’t work	




Example
• http://quirksmode.org/touchevents	


• Apple and MS Gestures	


• Be sure to move out of the test element. 
MSGestureChange continues firing.



Question 
time	
9

 



Thank you	

I’m going to put these 

slides online.	


Questions?
Peter-Paul Koch	


http://quirksmode.org 	

http://twitter.com/ppk 	


London JS, 13 February 2014 


