
Viewports
Peter-Paul Koch

http://quirksmode.org
http://twitter.com/ppk

DevReach, 13 November 2017

or: Why responsive
design works

Peter-Paul Koch
http://quirksmode.org
http://twitter.com/ppk

DevReach, 13 November 2017

I made
something

for you

Viewport visualisation
https://quirksmode.org/mobile/viewports/

1 Pixels

A pixel is not a pixel
• CSS pixels

• Device pixels

You already know what they are. You just don’t
realise it.

CSS pixels
• CSS pixels are the ones we use in

declarations such as width: 190px or
padding-left: 20px

• They are an abstract construct

• Their size increases or decreases when the
user zooms

Device pixels
• Device pixels are the physical pixels on the

device

• There’s a fixed amount of them that
depends on the device

Device pixels

Device pixels

What kind of pixels?
In general, almost all pixels you use in your
code will be CSS pixels.

The only exception is screen.width

… but screen.width is a serious problem that
we’ll study later

2Viewports

Viewports

• The 34% is calculated relative to its
container: the <body>.

• Every block-level element, including
<html> and <body>, has an implicit width:
100%.

• So we get 34% of the <body> width of
100%.

• 100% of what? Of the <html> width, which
is again 100%.

Viewports

• The <html> element’s width is calculated
relative to the viewport.

• Also called the initial containing block.

• On desktop it’s equal to the browser
window width.

• On mobile it’s more complicated.

Viewports
• When you page-zoom in with Ctrl/Cmd +,

you enlarge the CSS pixels

• and as a result fewer of them fit on the
browser screen

• Thus the viewport becomes smaller

Viewports
• On mobile it’s quite a bit more complicated

• Mobile browsers must render all sites
correctly, even if they haven’t been mobile-
optimized

• If the (narrow) browser window were to
be the viewport, many sites would be
squeezed to death

Viewports
• That’s why the mobile browser vendors

changed the rules:

• By default, the viewport is 768-1024px
wide (depending on the browser), with
980px the most common size

• We call this the layout viewport

• Responsive design is the art of overriding
the default width of the layout viewport

Viewports
• But this layout viewport is now much wider

than the mobile screen

• Therefore we need a separate viewport for
the actual window width

• We call this the visual viewport

Viewports
• By default, the layout viewport is

768-1024px wide (depending on the
browser), with 980px the most common
size

• This is the default layout viewport

• But for a proper mobile experience that’s
not what we want.

• Enter the ideal layout viewport.

Ideal layout viewport
• There are no wrong dimensions for the

ideal layout viewport.

• They’re what they need to be for the
device they run on.

• (Admittedly, there are weird values. But
they’re not wrong.)

Ideal layout viewport:
320px 414px375px

Viewports

• layout viewport

• visual viewport

So the desktop viewport has been split into
two:

Viewports

• layout viewport

• visual viewport

So the desktop viewport has been split into
two:

Fun game: whenever you see “viewport” in a
W3C spec, ask “Which viewport?”

Viewports

• layout viewport

• visual viewport

So the desktop viewport has been split into
two:

Fun game: whenever you see “viewport” in a
W3C spec, ask “Which viewport?”

The spec never answers that question, because
the viewports haven’t been officially specified.

So the desktop viewport has been split into
two:

But there’s a third construct:

Viewports

• layout viewport

• visual viewport

• the document

Visualisation
https://quirksmode.org/mobile/viewports/

Document and viewports
• The visual viewport moves inside the layout

viewport.

• But the layout viewport may also move
inside the document.

• Usually you don’t notice, except when you
use position: fixed

position: fixed
“For a fixed positioned box, the containing
block is established by the viewport."

Great!

But WHICH viewport?

Browsers were first all over the place, but
recently standardised on the layout viewport.

Note that this is not officially specified
anywhere; W3C is still in state of denial.

https://www.w3.org/TR/css-position-3/#containing-block
https://www.w3.org/TR/css-position-3/#containing-block
https://www.w3.org/TR/css-position-3/#viewport

position
• position: absolute means the element is

positioned relative to the document

• position: fixed means the element is
positioned relative to the layout viewport

• … and what about the visual viewport?

position
• Ages ago I proposed position: device-fixed,

that would position an element relative to
the visual viewport, and also would take it
out of the pinch zoom.

• So far only IE/Edge has implemented it.

3 Meta
viewport

Meta viewport
• In order to create a responsive design we

must set the layout viewport dimensions to
the ideal layout viewport dimensions.

• How?

Meta viewport

<meta name=”viewport”
content=”width=device-width”>

Meta viewport
<meta name=”viewport”

content=”width = device-width”>

• By default, the layout viewport is between
768 and 1024 pixels wide.

• The meta viewport tag sets the width of the
layout viewport to a value of your choice.

• You can use a pixel value (width=400)

• or you can use the device-width keyword to
set it to the ideal layout viewport

Meta viewport
<meta name=”viewport”

content=”width = device-width”>

• I’m assuming this does not come as a
surprise

• But …

• did you know that the following does exactly
the same?

Meta viewport
<meta name=”viewport”

content=”initial-scale = 1”>

• In theory, initial-scale gives the initial zoom
level (where 1 = 100%)

• 100% of WHAT?

• Of the ideal layout viewport

• In practice, it also sets the layout viewport
dimensions to the ideal layout viewport

Meta viewport
<meta name=”viewport”

content=”initial-scale = 2”>

• In theory, initial-scale = 2 tells the browser
to zoom in to 200%.

• It does so, but many browsers set the layout
viewport to half the ideal layout viewport.

• Why half? Because zooming to 200% means
that only half as many CSS pixels fit the visual
viewport

Meta viewport
<meta name=”viewport”

content=”initial-scale = 1”>

• And yes, this is weird.

• I wonder what Apple was smoking when it
set these rules. I want some.

Let’s mess
things up

Meta viewport
<meta name=”viewport”

content=”width = 400,initial-scale = 1”>

• Now the browser gets conflicting orders.

• Set the layout viewport width to 400px.

• No, wait, set it to the ideal layout viewport
width (and also set the zoom to 100%).

• Browsers react by taking the highest value

Min-width viewport
<meta name=”viewport”

content=”width = 400,initial-scale = 1”>

• “Set the layout viewport width to either
400px, or the ideal layout viewport width,
whichever is larger”

• If the device orientation changes, this is
recalculated.

• As a result, the layout viewport now has a
minimum width of 400px.

• Is this useful? Dunno.

Safari problem
<meta name=”viewport”

content=”width = device-width”>

• Safari always takes the portrait width (320
on iPhone 5-, 768 on iPad).

• Sometimes this is what you want; at other
times it isn’t.

• How to solve this?

Safari problem
<meta name=”viewport”

content=”initial-scale = 1”>

• Now Safari does it right. In portrait mode it’s
the ideal portrait width; in landscape mode
it’s the ideal landscape width.

• All other browsers do the same.

Safari problem
<meta name=”viewport”

content=”width=device-width,initial-scale=1”>

• Use both device-width and initial-scale.

• initial-scale works in Safari

• (device-width was needed for IE10, if you’re
still interested)

• and both work in all other browsers

Perfect meta viewport

<meta name=”viewport”
content=”
 width = device-width,
 initial-scale = 1”>

4 Media
queries

@media all and (max-width: 600px) {
 .sidebar {

float: none;
}

}

Media queries

Media queries
• There are two important media queries:

• width (min-width and max-width)

• device-width (min-device-width and max-
device-width)

• width is the one you want

Media queries - device-width
• device-width media query is always equal to

screen.width

• but the problem is screen.width may have
two meanings, depending on the browser:

• 1) ideal layout viewport

• 2) number of device pixels

Media queries - width
• width gives the width of the layout

viewport

• This is what you want to know

• Works always and everywhere

<meta name=”viewport”

content=”width=device-width,initial-scale=1”>

@media all and (max-width: 600px) {

}

Responsive design

Responsive design
• Set the layout viewport width to the ideal

layout viewport width (or, rarely, another
value)

• Use the width media query to figure out
how wide the layout viewport is

• Adjust your CSS to the width you found

• That’s how responsive design works. You
already knew that, but now you understand
why it works.

Media queries
• Always use min- or max-width.

• Thus you define a breakpoint: “these styles
are valid for all widths equal to or less/
greater than X”

• Exact widths, such as 320, are going to
misfire in a lot of browsers. (Even modern
iPhones need different values.)

5 JavaScript
properties

Layout viewport dimensions
document.documentElement.clientWidth

document.documentElement.clientHeight

Works (almost) everywhere.

Layout viewport offset
-document.

documentElement.

getBoundingClientRect().left/top

window.innerWidth

window.innerHeight

Doesn’t work in Android 2, Opera Mini, and
UC 8.

Or in Chrome 61+.

JavaScript - visual viewport

Visual viewport offset
window.pageX/YOffset

Relative to the document.

Visual viewport offset
window.pageX/YOffset

Relative to the document.

And what if you want the offset relative to the
layout viewport? Not available.

But you can calculate it.

Properties
https://quirksmode.org/mobile/viewports/

JavaScript properties
Confusing! Is there method to this madness?

Nope.

Back 10 years ago, mobile browser vendors
needed new properties for new viewports.

The Browser Wars had left behind some IE-
and Netscape-specific debris,

and mobile browser vendors just took it and
shaped it.

JavaScript properties
Meanwhile, W3C has still not specified any of
this.

I mean, it’s been only 10 years, so what’s the
rush?

Google, however, took action recently.

Visual viewport
window.visualViewport

width and height the width and height (surprise!)

pageLeft and pageTop Offset relative to the document

offsetLeft and offsetTop Offset relative to layout viewport

scale
Zoom level relative to layout

viewport

Sounds good, right?

JavaScript properties

Sounds good, right?

Unfortunately, Google also decided that all old
properties should refer to the layout viewport.

JavaScript properties

window.pageX/YOffset

JavaScript properties
Sounds good, right?

Unfortunately, Google also decided that all old
properties should refer to the layout viewport.

- Visual viewport offset in all browsers

- Except for Chrome 61+, where it’s the layout
viewport offset

Sounds good, right?

Unfortunately, Google also decided that all old
properties should refer to the layout viewport.

- Visual viewport dimensions

- Except for Chrome 61+, where it’s the layout
viewport dimensions

window.innerWidth/Height

JavaScript properties

But Google wouldn’t be Google if it didn’t
make things needlessly complicated.

So here we are now …

The theoretical solution is simple, but Google
is not going to implement it

because Important Reasons

JavaScript properties

Layout viewport
window.layoutViewport

width and height the width and height (surprise!)

pageLeft and pageTop Offset relative to the document

offsetLeft and offsetTop Offset relative to layout viewport

scale?
Zoom level relative to …

something?

So we’re stuck right now.

And there’s something else …

JavaScript properties

screen.width

screen.height

UNRELIABLE!

Some browsers define screen.width and
screen.height as the dimensions of the ideal
layout viewport

while others define them as the number of
device pixels

screen.width

Situation as of October 2016: not too bad, but
some browsers have problems.

Note: Safari stuck in portrait mode.
Source: https://www.quirksmode.org/mobile/tableViewport.html

screen.width

Not reliable right now.

And there’s something else …

All analytics scripts that give you screen sizes?
They’re unreliable as well

because they use screen.width.

Check your logs: did you EVER see an iOS
device in landscape mode?

You see?

screen.width

I hope you don’t feel too depressed after this
presentation.

Some things DO work well.

Still, having a minor depression is the proper
reaction to these examples.

But you’ll survive.

And the really important stuff DOES work.

Depressed?

Thank you
I’ll put these slides online

Questions?

Peter-Paul Koch
http://quirksmode.org
http://twitter.com/ppk

DevReach, 13 November 2017

